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J. Phys. A: Math. Gen. 17 (1984) 1033-1047. Printed in Great Britain 

Representation of quantum mechanical wavefunctions by 
transformation generators: 111. Canonical transformations 
in an extended phase space 

C Jung and H Kruger 
Fachbereich Physik, Universitat, 6750 Kaiserslautern, West Germany 

Received 17  August 1983 

Abstract. It is shown how quantum mechanical wavefunctions can be obtained from a 
sequence of simple canonical transformations, which map the given system onto a simple 
reference system. The resulting wavefunctions are at least uniformly valid up to order h.  
Under some more restrictive conditions for the individual transformation steps we even 
find the exact wavefunctions. The essential point of this paper is to enlarge the conventional 
coordinate-momentum phase space by taking time and energy as an additional conjugate 
pair. In this extended phase space we exploit the possibility of using transformations which 
intermix energy and time with position coordinates and momenta. Compared with transfor- 
mations in the conventional position-momentum phase space, we gain the advantage that 
scattering states and bound states can be treated in a unified way. Therefore this method 
is appropriate for systems with mixed spectra. In addition it allows for more flexibility in 
choosing the individual transformation steps. The practicability of the method is demon- 
strated by several examples. 

1. Introduction 

In two previous papers (Jung and Kruger 1982, 1983, denoted by I and I1 in the 
following) a method has been developed which provides, for a system with one degree 
of freedom, the quantum mechanical wavefunction in terms of the generators of an 
appropriate sequence of classical canonical transformations. We have used transforma- 
tions in the position-momentum phase space, which map a given Hamiltonian (denoted 
by H I  from now on) onto a simple reference Hamiltonian, preferably the new position 
coordinate. Then, in the new coordinates the description of the motion of the system 
is trivial, both classically and quantum mechanically. In the new coordinates the 
classical trajectories in phase space are straight lines. If the original system has only 
scattering states and therefore only unbound trajectories in the classical phase space, 
then these clearly can be mapped onto straight lines canonically. In 0 4.1 in I we have 
treated the linear potential as such a case. 

However, if the original system with one degree of freedom admits only bound 
states and therefore yields bound trajectories only in the classical phase space, then 
the trajectories in the original system and in the reference system, where the Hamil- 
tonian is a Cartesian coordinate, are no longer homeomorphic. A sequence of transfor- 
mations which nevertheless maps bound state trajectories onto an unbound coordinate 
in some restricted range must therefore change the topology. This is why we used 
complex valued extensions of canonical transformations in I. (For the complexification 
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1034 C Jung and H Kriiger 

of canonical transformations see Kramer et af (1975).) In 004.2 and 4.3 in I the 
harmonic oscillator was treated in this way. We obtained the exact oscillator wavefunc- 
tions with the help of complex transformation generators, which map the oscillator 
Hamiltonian onto a new coordinate. 

Since we now wish to obtain the solutions of the Schrodinger equation with one 
degree of freedom for both scattering and bound states, i.e. for all values of the energy 
parameter, in a unified way, we are forced to treat the energy and hence the time on 
the same level as positions and momenta. Otherwise there is no response from position 
and momentum to energy and time, which restores a corresponding change in the 
geometry of the trajectories, if we change from bound states to scattering states. In 
this way we are led to extend the conventional position-momentum phase space by 
adding time and energy as a further conjugate pair and treating the original one degree 
of freedom system as a dynamical constraint in this four-dimensional position-time- 
momentum-energy phase space. Such a phase space extension, or embedding, is not 
at all new (see ch VI, § 10 in Lanczos (1970) and § E.V. in Synge (1960)). It dates 
back at least to J L Lagrange and in relativistic dynamics it has become an absolute 
necessity. 

In the present paper the Schrodinger equation with one degree of freedom is solved 
for particular systems by a sequence of canonical transformations, which intermix all 
four variables, the coordinates of the extended phase space. Thereby a system with 
one degree of freedom is treated in the extended phase space like a system with two 
degrees of freedom in the conventional position-momentum phase space. For canonical 
transformations in the extended phase space already the generator of the first transfor- 
mation step depends on the energy explicitly and therefore there is no difficulty in 
changing the topological properties of the transformation in an energy-dependent way, 
in order to switch from bound to unbound trajectories or vice versa. These ideas are 
presented in full detail in the following four sections of this paper. In § 2 we explain 
our notation, and give the basic formulae for the quantum mechanical transformation 
kernels and their composition. In § 3 we derive sufficient conditions that have to be 
imposed on the various intermediate transformations in order that a sequence of them 
yields a uniform semiclassical or even exact solution of the corresponding Schrodinger 
equation. Section 4 contains some examples and in § 5 we draw further conclusions 
and give some final remarks. 

2. Composition of canonical transformations in quantum mechanics 

We study the composition of N - 1 canonical transformations, thus defining a sequence 
of N coordinate systems in the four-dimensional extended Phase space introduced in 
§ 1. We treat this extended phase space of a system with one degree of freedom like 
the conventional four-dimensional position-momentum phase space of a system with 
two degrees of freedom, and use the notation developed in I, I1 with some minor 
extensions, which are explained in the following. 

q: and p :  are the position and momentum coordinates in coordinate system k, 
1 = 1 , 2  denotes the two components of q and p or the two degrees of freedom; q: is 
position, q i  energy, p :  momentum and p i  time. 4 k  or P k  without a superscript means 
the two-component vectors q k  = ( q i ,  q ; )  or pk = (pk, p ; ) .  4: and 3: are the corres- 
ponding quantum mechanical operators. ( q k ( X ) )  = )qk (x') ,  q: ( x 2 ) )  and I P k (  y ) )  = 
Ipk ( y ' ) ,  p :  ( y 2 ) )  are the eigenstates of the operators q*k and f i k  with eigenvalues x and 
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y ,  i.e. 

d L I q k ( x ) )  = x f l q k ( x ) ) ,  ?k IPk( Y ) )  = Y f l p k (  Y ) ) .  (1)  
Coordinate system 1 consists of the standard Cartesian coordinates. The problem we 
wish to solve is given in coordinat5 system 1 by a Hamiltonian function Hl(q, p,  t )  
classically or a Hamilton operator H l ( x ,  (h/i) dldx, t )  quantum mechanically. In the 
extended phase space this problem is classically defined by the dynamical constraint 
fll(q:, p i ,  4:, P : )  = 0, where 

f11(q;7P:7 4 : , P : ) = H l ( q : , p : , p : ) - q : .  

The quantum version consists in finding solutions t,h1 of the Schrodinger equation 

hlqJ1 = 0. (2) 
We obtain H and fl in coordinate system k by inserting q1 and p1 as functions of q k  

and P k  into H1 and f l l ,  i.e. 

f l k ( q k 5  P k )  = a l ( q l ( q k ,  P k ) r  p l ( q k 9  P k ) ) .  

Our aim is, in complete analogy to the classical transformation theory of Jacobi, to 
map onto a *coordinate system N in which has such a simple form that the 
solution of a d N  = O  is obvious (see also Falk 1952). Then $1 is given by the 
transformation which maps $.v back to I)~, i.e. 

where x l c N  is the transformation kernel of the total transformation combining the 
whole sequence of intermediate steps. Therefore, the central point of this paper is 
the construction of x l c N  out of transformation generators. 

For each transformation step the corresponding transformation kernel is the scalar 
product of the eigenstates of the old q*k or f i k  with the eigenstates of the new g k + l  or 
f i k + l .  It is not possible to give these matrix elements for all canonical transformations 
in terms of known functions. However, it has been shown by Miller (1974) how all 
these matrix elements can be obtained semiclassically at least in closed form; they are 
a function of the classical generator of the transformation only (see equations (2.50) 
and (2.51) in Miller 1974). In the following we shall define all transformations by 
generators of type 2 or 3 (for the representation of canonical transformations by 
generators see 0 48 in Arnold (1978)). Ft, the generator of type 2 which defines the 
transformation from coordinate system k to coordinate system k + 1, is a function of 
the old position and new momentum, i.e. F; ( q k ,  P k + l ) .  F: is a function of pi and qj+l. 
In this notation Miller’s equation for the transformation kernel is 

S D k ( X ,  Y )  = ( q k ( X ) l P k + i (  Y ) ) =  (2&)-‘[det(a2 F: ( X ,  Y ) / a X  f J Y ) l l ”  exp[(i/h)Ft (4 Y ) ]  
(3) 

with a similar expression involving F3 for (p , (y ) lq ,+ l (x )k .  cpk is the kernel of the 
integra! transform which maps the wavefunction $ k + l  of & + I  onto the wavefunction 
$k of H k ,  

$ k ( X )  = p k ( X ,  Y ) $ k + l (  Y )  dy. 
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If the one-step transformation between coordinate sy2tem k and k + 1 would map the 
given problem onto the reference system for which k i k + l =  ( i k + l ,  then ( q k l q k + l )  would 
already be the wavefunction of the original problem. 

In general (3) is valid only semiclassically and, even worse, the determinant gives 
rise to caustic singularities and the resulting wavefunction would not be suited for 
many applications. Therefore a one-step transformation gives a semiclassical approxi- 
mation which is too crude to be useful in most cases. In I we have shown that if the 
generator F is linear in the new variable, then (3) is quantum mechanically exact. 
Accordingly, we divide the transformation from a given system to a simple reference 
problem into a sequence of simple steps with this linearity property, and thereby obtain 
wavefunctions which are exact, or at least valid as uniform semiclassical approximations, 
i.e. without caustic singularities. In 0 3 we show that the same holds for transformations 
in the extended four-dimensional phase space. 

Without loss of generality we may always assume that the total number of transfor- 
mation steps in a sequence is even and that the various intermediate steps are defined 
by generators of type 2 and 3 alternately. This ensures that the new variables in F k  
are the same as the old variables in Fk+' .  The transformation kernel after a composition 
of two steps is then 

where c p k  has been defined by (3).  
For an arbitrary number of steps we thus obtain 

dyx""(x, y)cp"( y, 2). ~ " " " ( x ,  z )  = I 
In order to avoid boundary contributions from intermediate partial integrations, 

we choose the integration domains in such a way that the integrand vanishes sufficiently 
fast at the boundaries of all integration sets or that the integration domains are cycles 
in complex valued extensions of the integration regions. If the integrations are extended 
to infinity, then we require that the integrand vanishes exponentially along any direction 
in the integration domain. The further specification of the integration paths clearly 
depends on the boundary conditions imposed on In the present paper we are only 
interested in constructing solutions to the differential equation (2) and do not care 
about particular boundary conditions. 

3. Exactness conditions 

The exact transformation kernels are characterised by the property of being solutions 
of certain differential equations. A compilation of these equations for transformations 
given by generators of the various types has been given by Eckelt (1979, equations 
(2.12)-(2.15)). Even though these equations have been derived for the case of one 
degree of freedom, it is obvious that they hold component-wise also for several degrees 
of freedom. One needs only to attach component indices to the q, Q, p and P variables 
which occur in Eckelt's equations. For the individual transformation steps we need 
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equations for generators of type 2 and 3. The composition of an even number of 
alternating F2 and F3 transformations then results in a kernel, which maps from an 
old position eigenstate to a new position eigenstate. This kernel must fulfil the same 
equations as a kernel given by a one-step transformation defined by a generator of 
type 1, which is a function of the old and new position variables. Therefore we need 
the exactness conditions for the F1 case too. All these conditions are now displayed 
for later reference. The notation q i  (q,, p , )  and p i  (q,, p , )  indicates that the qJ and p’ 
coordinates in coordinate system k are expressed as functions of the coordinates in 
coordinate system 1. 

Type 3. ~ ( x ,  y)=(pk(x)Jq,( y))  is exact if it satisfies 

(h/i)(a/ay’)(P(x, y) =-P:($k, hk)(P(X, y), ( 8 ~ )  

Y’(P(X3 Y)=q{(ik,Bk)(P(& Y), ( 8 b )  

where & = ih a/axi, fi’k = x! 

defined in ( 3 ) .  
Now we present a condition which guarantees that (7) are satisfied by the kernel 

Proposition 1. Let the transformation be defined by the generator 

F: (qk, Pk+l) ‘P:+lfl(qk)+P’k+lf2(qk)+g(qk) (9) 

where f l ,  f2, g are any differentiable functions of qk. For the transformation to be 
non-singular we require that the determinant of the mixed second derivative of F is 
non-zero, i.e. 

If (9) and (10) are fulfilled, then the transformation kernel given by (3) fulfils ( 7 u ) ,  ( 7 b ) .  
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We introduce A, = df;/aq:. Because of ( lo ) ,  det A # 0 hence 

We further note that 

which follows on calculating the derivatives of the matrix elements of B. With the 
help of B we may resolve (12) for pLtl, 

P:+l = c ( P i  - a g / a q i ) B , .  (14) 
I 

In general B is a function of qk, therefore it is necessary to choose an appropriate 
order of the factors in (14) if an operator version of (14) is considered in which qk is 
the multiplication operator and Pk is a derivative operator. Because Pk appears linearly 
in (14) the choice of any symmetric order is sufficient, e.g. 

e:+ 1 = $ ( - g ( 4 k  )/ a4: ) Bl] ( d k  +$ Bl] ( 4 k  ) ( f i  - ag ( 4 k  )/ 1. (15) 
I I 

e k t l  applied to any function cp of qk gives 

According to (3), c p k  is 

(h / i ) (a /ay ' )cpk(x ,  Y )  =f i (X)cpk(X,  Y ) .  

Comparison with (1 1) shows that ( 7 a )  is fulfilled: 

Multiplication by 
then leads to 

summation over 1, using (13) and the fact that Z,B, ,A, j  = S , ,  

Comparison with (16) shows that ( 7 b )  is fulfilled. 

Remarks. 
(1) For generators of any other type an analogous proposition holds, i.e. a sufficient 

condition for exactness of (3) is that the generator F is a linear function of the new 
coordinate occurring in E This linearity leads to the following two essential properties. 

(a) The determinant depends on the old variable only. This avoids caustic sin- 
gularities. 
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(b) P k + l  in (14) is a linear function of Pk. This allows a simple ordering prescription 
(15) or analogous expressions for generators of the other types. 
Analogous conclusions hold if F is a linear function of the old coordinate occurring 
in E 

(2) The transformation kernel cp remains exact if a function of the new variable 
only is added to the generator. But it is not necessary to take into account this 
generalisation, because it is always possible to shift any function of the new variable 
only into the generator of the next step of the composite transformation. We repeat 
this statement as: 

Proposition 2. Let h ( p z )  be a differentiable function of p z  and F: and F: be two 
transformation generators, which are linear in the new variables and give rise to 
non-singular transformations. Then, the two sequences of transformations from coor- 
dinate system 1 to coordinate system 3 given by the generators F: ( q l ,  p 2 )  and F: ( p 2 ,  q3) 
in one case and ~ : ( q 1 , ~ 2 ) = F : ( q 1 , ~ 2 ) + h ( p ~ ) ,  ~ ' : ( p 2 , q 3 ) = F : ( p 2 , q 3 ) - h ( p Z )  in the 
other case lead to the same expressions of q3, p 3  in terms of q l ,  pl. 

This proposition can be proven by straightforward calculation of q3, p 3  in both cases. 
If several steps of the form (9) or an analogous form for generators of type 3 are 

composed, then the integral representation (4), ( 5 )  of the total transformation kernel 
is not exact in general. Inserting one transformation step into the previous one causes 
ordering problems in the operator case which are not treated exactly by the composition 
rules (4) and ( 5 ) ,  if the generators are of the form (9). In the total transformation 
kernel this may cause errors of order h2 or higher. To ensure exactness of the composed 
total kernel we may impose stronger requirements on the transformation generators 
and formulate: 

Proposition 3. If in a sequence of canonical transformations all generators have a 
constant determinant of the second mixed derivatives, then (3)-( 5) provide the exact 
quantum mechanical transformation kernel x. x remains exact if at most one generator 
is of the more general form (9). 

This is in complete analogy to proposition 3 in I and may be proven in the same 
way. We do not give a proof here, because the conditions in proposition 3 are of little 
practical value. In all the examples investigated in 9 4 we need several transformation 
steps, whose determinants are not constant. In addition, these conditions are only 
sufficient but not necessary. In 9 4 we shall see that there exist non-trivial examples 
for which these sufficient conditions are not fulfilled, but where the resulting transforma- 
tion kernels and wavefunctions are nevertheless exact. Unfortunately, so far we have 
not been able to find both necessary and sufficient conditions for the multistep 
transformations to provide the exact total transformation kernel. 

4. Examples 

This section contains a few examples for the transformation technique developed in 
the previous sections. For simplicity we take examples which can be solved with small 
effort by conventional methods. Therefore it is easy to compare our results with the 
standard solutions. 
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4.1. The two-dimensional oscillator 

Before we give examples for transformations in the extended phase space, we start 
with the two-dimensional isotropic harmonic oscillator for the following two reasons. 

(1) We treat the extended phase space for a system with one degree of freedom 
like the normal position-momentum phase space of a system with two degrees of 
freedom. Therefore, it is useful to gain some experience in handling transformations 
in this four-dimensional phase space. 

(2) The following example uses the two-dimensional oscillator as reference system. 
So, the transformations given in this example are steps which can be added to the 
transformations of the next example in order to map the next example onto the position 
variable in the final coordinate system. In this sense the present example is an 
intermediate step for the next example. 

Let the Hamiltonian function of the two-dimensional oscillator be given by 

Hl(41, PA = (P:)2/2m+(P:)2/2m+tmo2(q:)2+4mw2(4:)2. (18) 
This Hamiltonian separates in coordinate system 1 and it could be mapped onto 
H3(q3,  p 3 )  = 4: +q: by applying the transformations used in 0 4.2 in I. This, however, 
would not provide any new insight into transformations which intermix the two degrees 
of freedom and in addition it would not represent the resulting wavefunction in the 
form which is most useful for the next example. Instead, we shall map HI onto 
H5(q5,  p 5 )  = 4: in such a way that the resulting wavefunction is given in two-dimensional 
polar coordinates. Therefore, as the first transformation step we introduce polar 
coordinates according to 

a2F 
a41 aP2 

det - = [ ( 4  )' + (4: = (4;)- '  

For a more convenient calculation of the integrals occurring in the integral representa- 
tion of the composite kernel, we insert in the next step the identity transformation 

det a2F/ap2 aq3 = 1, F: ( P 2 ,  43) = - P h i  -P:& 
Hdq3, ~ 3 )  = (p:)'/2m + (~:) ' /2m(q:)~+4mw~(4:)2.  

(20) 

To map H3 onto 4: we use essentially the same two transformations as in 0 4.3 in I, 
namely 

FZ(q3, p4) = imw(q3) ~ ~ + t i m w ( q : ) ~ - i p ;  ln(q:/xo)+q:pi, 
det a2F/aq3 ap4 = 2imwq:, 

F:( p 4 , 4 5 ) =  (1/2i)( p i  - d / w )  l n ( p 3  + (1/2i)(p; + d / w )  In( p i  + 1) - p i &  

det a2F/dp4 aq5 = [2iwp:( p i +  l)]-', 

1 2  I 

H d 4 5  PSI = 4:. (21) 
Now the Hamilton function is in the simplest form and it is obvious that the solution 
of the Schrodinger equation is given by the &distribution 6(q: - E ) ,  because of 

f i s s ( q s ,  P 5 ) G ? :  - E )  = 4:s(q: - E )  = q : w :  - E )  = E q q :  - E ) .  
This gives the solution of the Schrodinger equation for any value of the energy E. 
These &distributions are not yet sufficiently definite solutions, because they do not 
depend on the variable of the second degree of freedom. We have started from an 
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integrable system with two degrees of freedom, and therefore a definite solution may 
be characterised as an eigenfunction of two commuting operators. Equation (21) 
shows that any function of q: and p :  commutes with H5 and accordingly any function 
of q: and p :  can be chosen as second conserved quantity. An interesting choice is 
the angular momentum L5 = p:. So, a definite wavefunction in coordinate system 5 is 
given by 

Ctdq:, d 1 E, F )  = exp[(i/h)Fq:16(q: - E )  

f i 5 * 5  = q : * s  = E*,, 

(22) 

which fulfils 

= P^:IL~ = (fi/i)(a/aq:)+s = ~ 5 .  

The transformation from +s back to +1 in coordinate system 1 is arranged by the 
kernel xTCS, which will be built now by application of (3)-(5). Because we are not 
interested in normalisation, we put all unimportant constant factors into an unspecified 
normalisation constant N. 

The first two transformations are real and the transformation of p i  in the third 
transformation step is real. Therefore a, p, y, 6 , l  (the eigenvalues of pi, p:,  q:, q:, p : )  
are integrated over the real axis. The transformation of p i  in the third transformation 
step is complex. Therefore E (the eigenvalue of p i )  is integrated along a path in the 
complex plane. We use the same path as in PO 4.2 and 4.3 in I and P 4.1 in 11: it starts 
from infinity along the positive real axis, encircles the origin once along the boundary 
of a circle of radius smaller than 1 and then tends back to infinity along the positive 
real axis of the next sheet of the Riemann surface belonging to the branch point at 
E = 0. Note that the integrand goes to zero exponentially as the path goes to infinity 
and that the path does not hit a singularity of the integrand. 

The a, p, y, 6 integrations in (23) can be done easily. Using the abbreviations 
r=[(q:)2+(q:)2]1/2 and cp =tan-’(q:/q:), we find 

mo 1 
r2(1+2&)+-cp05- 

h 
x ( &  + 1)(-1/2+5/2h+q:/2hw) 

Thus +1 becomes 
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and insertion of (22) and (24) gives 

Ccll(r, PIE, F) =NrF'* exp[(i/h)Fq] I dE E ( - ~ / ~ + ~ / ~ ~ - ~ / ~ * ~ ~  

exp[-(mw/2h)r2(1 + 2 ~ ) ] .  (25) x ( E  + 1 ) ( - 1 / 2 + F / Z h + E / Z * w )  

As direct calculation shows, the wavefunction ((Il is an exact solution of the equations 

&*l =E*,,  J%1=F*1. 

The correct quantisation of the values of F and E can be obtained from (25) by 
imposing uniqueness requirements. GI has no branch point at r = 0 if F / h  is integer, 
i.e. if the conventional angular momentum quantisation is satisfied. Therefore we put 
F / h  = 1 EZ. 

For 1 2 0  we obtain the solution which is regular at the origin and for I < O  we 
obtain a solution which is singular at the origin. In order to obtain a second linearly 
independent solution for each 1 we can replace the generators F: and F: by 

F : ( q 3 ,  p4) =imw(q3) p4 + h o ( q : ) 2 + i p j  ln(q:/xo)+q:pi, 

F;(p4,q5) =(2i)-'(-p: - q : / w )  ln (p~)+(2 i ) - ' ( -p j+q: /w)  In(p:+l)-ph:.  

This change of sign does not have any influence on the mapping of H3 onto H5 = 4:. 
Performing with the new generators the same steps as before leads to 

G1(r, VIE, F) = dV*r-F/* exp[(i/h)Fq] 1 dE E ( - 1 i ' 2 - F / 2 h - E / 2 h w )  

1 2 1  

exp[-mwr2(1 + 2 ~ ) / 2 h ] .  (25') 
x ( E  + 1)(-1/2-Fi2h+E/Ziiwj 

Also this function is an exact solution of the Schrodinger equation and it is an 
eigenfunction of the angular momentum with eigenvalue F. Equation (25') gives a 
solution which is singular at the origin for l > O  and the solution which is regular at 
the origin for 1 ~ 0 .  

Further, the integrand in (25) or (25') has no branch point at E =0, if A =  
- ; + 1 / 2 - E / 2 h w ~ Z i n  thecaseof (25) o r i fA=- i -1 /2 -E /2hwEZin thecaseo f  
(25'). If A is a positive integer or zero, then the E integral vanishes. If A is a negative 
integer, then the integrand has a pole at E = 0 and the integration path can be deformed 
to the boundary of a circle around the origin, yielding a single-valued i,bl. 

If we are only interested in regular functions we can combine the conditions for 
(25) and (25') and obtain the following result. There is' a single-valued, regular. 
wavefunction for all values of F and E such that F / h =  I E Z  and A =  
- 4 + / 1 ) / 2 - E / 2 h w ~ Z ,  and A<O. 

This condition is equivalent to 

E = hw(2n + / I [  + 1) with n = 0 , 1 , 2 , .  . . . 
One notes that this condition gives the correct energy eigenvalues of the two- 
dimensional oscillator. 

4.2. 

The next example is the Morse system defined by 

0, = ( ~ ) ~ / 2 m  + D e-2q/"~-2D e-q/xO-E. 



Wavefunctions created by transformation generators 1043 

We put 4 = 4 ! ,  p = p i ,  E = q:, t = p : .  The first transformation step removes the exp 
functions by 

F:(ql,p2) =xed exp(-q:/2xo)+xop:(-8mq:)'/2, 
det a2F/aq, ap2 = - m~,(-2mq:)-'/~ exp(-q:/2xo), 

(27) 

By the next two transformation steps we replace 4: by p,' and keep the variables of 
the first degree of freedom the same: 

F: ( P 2 ,  93) = -p:4: +p:4:  +(P:)2/27 

F: ( 4 3 ,  P4) = 4:p: + q : p :  + m 2 / 2 .  

Both these transformations have determinant 1 : 

As a last step we apply the transformation from polar coordinates to Cartesian coordin- 
ates. This is the inverse of the first transformation step in 0 4.1: 

Ft:(P4, 4 5 )  =-P:[(4:)2+(4:)211/2-P: tan-'(q:/q:L 

det a2FlaP4 a45 = [ (4:12+ (45)  1 2 2 -1 /2  
9 

In analogy to the previous example we shall use again the abbreviations r =  
[(4:)2+(4:)2]1/2 and cp = tan-'(q:/q:). According to (4) and (5) the total transforma- 
tion kernel is given by 

xlc5(4, E, r, c p )  = K(E)S(xo  e-q'2xo- r )  e~p[-( i /h)cp(-8mE)' /~x~] .  (29) 
In this expression the original variables 4 and E have been used and all uninteresting 
factors have been combined into an energy-dependent normalisation factor "V( E ) .  

The square bracket in (28) is just the fl function of the two-dimensional oscillator 
(compare (18)), if the following replacements are made: 

4Dlxg + w ' m / 2  and 8 D + E .  (30) 
Accordingly, the wavefunctions which are mapped onto zero by the operator version 
of the square bracket are given in (25). In orderJo be able to select in a unique way 
which wavefunctions are mapped onto zero by f15, it is neccessary to keep track of 
the correct operator ordering of the two factors on the RHS of (28).  Since in general 
our method provides wavefunctions of only semiclassical accuracy, the choice of any 
arbitrary symmetric order will at most lead to corrections of the order of h2. Therefore, 
an obvious choice for the operator version of f15 is 

The wavefunctions as, which solve 
A 

R5a5 = 0 
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are then given by 

0 5 ( r ,  CPIQ F) = r - ’ h ( r ,  vlQ F )  
where 

a5(r ,  v ) = r  F l h - 1  e i&/h  

is obtained from (25) after the replacements (30), 

d p  exp[-(2mD)’12r2(1 +2p)/hx0] 

( - 1 / 2 + F / 2 h - ( 2 m D ) ’ / Z x ~ h )  ( + 1)(-1/2+F/2h+(2mD)’/2xo/h) 
X P  

There arises now the question which value the quantity F should take. In 04.1 we 
have shown that F is the value of the angular momentum. Transforming the angular 
momentum of coordinate system 5 back into coordinate system 1 gives ~ ~ ( - 8 m q : ) ” ~ .  
In order to generate a solution to the Schrodinger equation corresponding to (26) 
with the energy value q: = E ,  F has to be 

F=xo(-8mE)”2.  (33) 
If we transform u5 with the kernel (29) and make use of (33), we finally obtain 

= X ( E )  e~p[-q(-2mE)’’~/h] d p  e ~ p [ - ( 2 m D ) ” ~ x ~ ( 2 p +  1) e-q/xo/h] I 
p ( -  1 / 2 + ( - 2 m E ) ” 2 x , / f i - x , ( 2 m D ) ’ / 2 / h )  

(34) (- 1/2+x,( -2mE ) ‘ / 2 / h + x o ( 2 m D ) ” 2 /  h )  X ( P + l )  
This is the exact wavefunction of the Morse system. The energy quantisation of the 
bound states is obtained again by the requirement that the integrand has no branch 
point, but a pole at p=O. This holds if 

E =E,  = - (h2/2mxi)[-n - ; + ~ ~ ( 2 m D ) ” ~ / h ] ~  with n = 0 , 1 , 2 , .  . . .  (35) 
The quantity 

B=-n-~+xo(2mD)”2/h=xo(-2mE)”2/h 

corresponds to the quantity F / h  in (25). Regularity of i,bl and therefore also of u5 at 
r = O  has the effect that the corresponding u1 goes to zero exponentially for q+ +CO, 

and therefore this leads to normalisability of ul. So, (34) is a regular solution only 
for B > 0, i.e. for 

n < ~ ~ ( 2 m D ) ” ~ / h - $ .  (36) 
Accordingly, we obtain only a finite number of regular, single-valued bound state 
wavefunctions. One notes that (35) is the correct energy quantisation condition of 
the Morse system. For a conventional treatment of the Morse system see problem 70 
in Fliigge (1971). 

The factor (-2mE)’” in the exponent of (34) and the corresponding factor 
(-8mql) in (27) switches from real to imaginary values on passing from E > 0 to 
E < O .  Accordingly, u1 decreases exponentially for q + m  if E < O  and becomes 
oscillatory for q + m if E > 0. The p integral is a modulation function of the plane 
wavefactor e~p[-q(-2mE)’’~/h]. For q + -CC the function a1 decreases exponentially 
for any value of E. 

2 1/2  
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If we insert the second, linearly independent oscillator function (given in (25’)) 
into (32) and the resulting e5 into (34) and perform the same steps as before, then 
we obtain 

&1(4, E )  = N ( E )  e~p[q ( -2mE)”~ /h ]  dp e~p[- (2mD)”~x, (2p+ 1) e-4’xo/h] I 
( - 1 / 2 - ( - 2 m E ) “ z x o / h - x o ( 2 m D ) ’ / z / f i )  

X P  

x ( p +  1) (34‘) ( - 1 / 2 - ~ ~ ( - 2 m E ) ” ~ / h + x ~ ( 2 m D ) ’ / Z / h )  

We see that the switch from u1 to G1 is equivalent to the transition from the positive 
to the negative branch of the square root in the expressions (-2mE)’”, 

The integrand in (34’) has a pole at p = O  if -4- ~ ~ ( - 2 m E ) ” ~ / h -  ~ , ( 2 m D ) ” ~ / h  
is a negative integer. This leads to an energy quantisation condition which is identical 
to (35). This time the quantity 

B = n + 4 - ~ , ( 2 m ~ ) ’ ~ ’ / h  = ~ , ( - 2 m ~ ) ’ / ~ / h ,  

corresponding to the quantity F / h  in (25’), has to be negative in order to generate a 
regular solution, i.e. again we obtain a regular solution only if (36) is fulfilled. 
Therefore, cl does not lead to any new bound state solutions. 

For positive values of E, G l ,  given in (34’), is a linearly independent, second solution 
to the Schrodinger equation of the Morse problem. 

4.3. 

Now we study the non-relativistic radial hydrogen problem, whose Hamiltonian con- 
tains the centrifugal potential I(1+1)h2/2mq2. In I, § 4.3 we have shown that our 
transformation method is not able to treat the centrifugal potential correctly. If we 
transform a Hamiltonian with a centrifugal potential onto a reference Hamiltonian 
without centrifugal potential, then the reference wavefunction, when transformed back, 
leads to a Hamiltonian with a modified centrifugal potential, which differs from the 
original one by terms of the order h2. This is because in general the exactness of the 
composite transformation may not be guaranteed. 

Hence, we may start from an initial system with a centrifugal potential modified 
in such a way that this modification just cancels this error generated by the transforma- 
tion. As we have shown in I, § 4.3, the appropriate modification is to replace 1( 1 + 1) 
in the original centrifugal potential by ( I +  $)’. With this modification the initial problem 
in coordinate system 1 becomes 

(37) ill =(p )2 /2m-Q2/q+( I+3)  1 2  h 2 /2n1(q)~-E.  

As in the previous example we define q = q: ,  p = p t ,  E = q:, t = p : .  This hydrogen 
problem is now mapped onto the Morse problem by the following two transformations. 
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This expression within the square brackets coincides with the Morse problem defined 
by (26), if we make the replacements 

P-,P:, D+q% 4 4  E +-(l+9’h2/2mx;. (39)  

Concerning the operator ordering of 6,  we use the saqe  symmetrisation as in the case 
of (28) and accordingly the wavefunctions t3 solving n3t3 = 0 are given by 

1 2  2 
t 3 ( q 3 )  =exp(-q:/xda1(q:, - ( I + z )  h /2mx;), 

where u1 is defined by (34), 

t3(q3)  = X(q: )  exp[-q:(I+$)/x,] d p  ( p +  1)(‘+xo(2mq:)”2/h), 

exp[-x&mq:)”* exp(-q2xo)(l  + 2p)/hI. (40) ( - 2 mq:) ’ /  2 /  h )  

Again, constant factors have been combined into the energy-dependent normalisation 
factor X(q:) .  From (4) and ( 5 )  we infer that the transformation kernel is 

which leads upon transforming from t3 to t1 to the result 

&(q,  E )  = K(E)q‘+’ 1 dp e~p[q ( -2mE)”~(1+2p) lh I  

This is an exact solution of the radial hydrogen problem with centrifugal potential 
1( 1+ l)h2/2mq2. Again we obtain the exact energy quantisation by requiring the single 
valuedness of tl. The integrand has a pole at p=O if and only if 

E =E, = - m ~ 4 / 2 h 2 ( 1 +  v +  112 where v = 0, 1 , 2 , .  . . . (43) 
For E > 0 a further linearly independent solution t1 can be obtained from t3 if 

instead of (40) the linearly independent second solution of the Morse problem is used. 
This leads to the correct hydrogen wavefunction which behaves like q-’ at q = 0. 

5. Conclusions 

We have shown, using the examples of the Morse potential and the radial hydrogen 
problem that the concept of canonical transformations in the extended phase space 
enables us to treat problems with bound state and continuum spectra along the same 
lines as in I and 11. For the above mentioned two examples the exact integral 
representations for the wavefunctions resulted and the uniqueness requirement led to 
the exact energy quantisation. 

Let us make three final remarks: 
(1) If we do not require exactness of each intermediate transformation kernel, but 

are satisfied instead with uniform semiclassical kernels in each step, then we can allow 
for more general transformation generators. We only require that the determinant of 
the second mixed derivatives factorises into a product of one function of q k  only and 



Wavefunctions created by transformation generators 1047 

one function of pk+l only. This is sufficient to avoid caustic singularities. If in the final 
integral for the multistep transformation kernel each step is free of caustic singularities, 
then it is possible to choose all integration domains in such a way that all integrals 
converge properly and caustic singularities are never met. Hence a uniformly valid 
semiclassical approximation for the total transformation kernel is then obtained. 

( 2 )  It is not possible to take (12) as a quantisation prescription of the classical 
variable pk+lr because $ k + l  is not always self-adjoint, expecially if non-bijective or 
complex transformations have been applied. For more details on these objections see 
11. So, (12) is only a recipe how to correlate a differential operator with pk+l in such 
a way that the Schrodinger equation transforms in the desired way. In the same spirit, 
the complete paper may be viewed as a computational recipe, how to construct solutions 
to a given differential equation, without giving any interpretation of the quantities 
occurring in intermediate steps. 

(3) Example 4.1 raises the following question: can we handle any system with two 
degrees of freedom by the same method as the two-dimensional oscillator and map 
any given H,(q:, q:, p : ,  p : )  onto HN = q,?., by an appropriate sequence of canonical 
transformations? Unfortunately, the answer is no, for the following reason. 

The Poisson bracket {qh, q f i }  = 0 and therefore 4% is a second conserved quantity 
in coordinate system N, which is independent of the energy. Then the transformation 
from qf i  back to coordinate system 1 gives a second conserved quantity which commutes 
with HI, because Poisson brackets remain invariant under canonical transformations. 
It stays independent of energy if the transformations are non-singular. Therefore the 
system is integrable. However, a generic system with two degrees of freedom is not 
integrable and it is therefore impossible to map this non-integrable HI onto an 
integrable HN by a finite sequence of canonical transformations. It is only possible to 
map a non-integrable HI onto another non-integrable HN. Therefore, the transforma- 
tion technique as applied in § 4.1 is not suited for generic systems with several degrees 
of freedom. 

At the moment it is not known how to generalise our transformation method to 
the treatment of non-integrable systems. If it could be done, it would be a big advance, 
because not much is known about the semiclassical quantisation of non-integrable 
systems. 
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